Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 308, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302456

RESUMEN

Cell-surface receptors play pivotal roles in many biological processes, including immunity, development, and reproduction, across diverse organisms. How cell-surface receptors evolve to become specialised in different biological processes remains elusive. To shed light on the immune-specificity of cell-surface receptors, we analyzed more than 200,000 genes encoding cell-surface receptors from 350 genomes and traced the evolutionary origin of immune-specific leucine-rich repeat receptor-like proteins (LRR-RLPs) in plants. Surprisingly, we discovered that the motifs crucial for co-receptor interaction in LRR-RLPs are closely related to those of the LRR-receptor-like kinase (RLK) subgroup Xb, which perceives phytohormones and primarily governs growth and development. Functional characterisation further reveals that LRR-RLPs initiate immune responses through their juxtamembrane and transmembrane regions, while LRR-RLK-Xb members regulate development through their cytosolic kinase domains. Our data suggest that the cell-surface receptors involved in immunity and development share a common origin. After diversification, their ectodomains, juxtamembrane, transmembrane, and cytosolic regions have either diversified or stabilised to recognise diverse ligands and activate differential downstream responses. Our work reveals a mechanism by which plants evolve to perceive diverse signals to activate the appropriate responses in a rapidly changing environment.


Asunto(s)
Evolución Biológica , Plantas , Plantas/genética , Receptores Inmunológicos/genética , Filogenia , Receptores de Reconocimiento de Patrones/genética
2.
New Phytol ; 241(4): 1763-1779, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37823353

RESUMEN

Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , NADPH Oxidasas , Inmunidad de la Planta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Oxidorreductasas/metabolismo , Fagocitosis , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34531323

RESUMEN

Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunidad de la Planta/fisiología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Expresión Génica , Inmunidad Innata/genética , Ligandos , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología
5.
Front Plant Sci ; 12: 680151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122492

RESUMEN

Root-knot nematodes (RKNs) are among the most devastating pests in agriculture. Solanum torvum Sw. (Turkey berry) has been used as a rootstock for eggplant (aubergine) cultivation because of its resistance to RKNs, including Meloidogyne incognita and M. arenaria. We previously found that a pathotype of M. arenaria, A2-J, is able to infect and propagate in S. torvum. In vitro infection assays showed that S. torvum induced the accumulation of brown pigments during avirulent pathotype A2-O infection, but not during virulent A2-J infection. This experimental system is advantageous because resistant and susceptible responses can be distinguished within a few days, and because a single plant genome can yield information about both resistant and susceptible responses. Comparative RNA-sequencing analysis of S. torvum inoculated with A2-J and A2-O at early stages of infection was used to parse the specific resistance and susceptible responses. Infection with A2-J did not induce statistically significant changes in gene expression within one day post-inoculation (DPI), but afterward, A2-J specifically induced the expression of chalcone synthase, spermidine synthase, and genes related to cell wall modification and transmembrane transport. Infection with A2-O rapidly induced the expression of genes encoding class III peroxidases, sesquiterpene synthases, and fatty acid desaturases at 1 DPI, followed by genes involved in defense, hormone signaling, and the biosynthesis of lignin at 3 DPI. Both isolates induced the expression of suberin biosynthetic genes, which may be triggered by wounding during nematode infection. Histochemical analysis revealed that A2-O, but not A2-J, induced lignin accumulation at the root tip, suggesting that physical reinforcement of cell walls with lignin is an important defense response against nematodes. The S. torvum-RKN system can provide a molecular basis for understanding plant-nematode interactions.

7.
Nature ; 585(7826): 569-573, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32846426

RESUMEN

Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Inmunidad de la Planta , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
8.
Proc Natl Acad Sci U S A ; 117(17): 9621-9629, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284410

RESUMEN

The plasma membrane (PM) is composed of heterogeneous subdomains, characterized by differences in protein and lipid composition. PM receptors can be dynamically sorted into membrane domains to underpin signaling in response to extracellular stimuli. In plants, the plasmodesmal PM is a discrete microdomain that hosts specific receptors and responses. We exploited the independence of this PM domain to investigate how membrane domains can independently integrate a signal that triggers responses across the cell. Focusing on chitin signaling, we found that responses in the plasmodesmal PM require the LysM receptor kinases LYK4 and LYK5 in addition to LYM2. Chitin induces dynamic changes in the localization, association, or mobility of these receptors, but only LYM2 and LYK4 are detected in the plasmodesmal PM. We further uncovered that chitin-induced production of reactive oxygen species and callose depends on specific signaling events that lead to plasmodesmata closure. Our results demonstrate that distinct membrane domains can integrate a common signal with specific machinery that initiates discrete signaling cascades to produce a localized response.


Asunto(s)
Arabidopsis/fisiología , Quitina/metabolismo , Nicotiana/fisiología , Plasmodesmos/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenómenos Biomecánicos , Membrana Celular/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mecanotransducción Celular/fisiología , Hojas de la Planta/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno
9.
Mol Plant Microbe Interact ; 33(3): 474-487, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31721650

RESUMEN

Plant resistance inducers (PRIs) are compounds that protect plants from diseases by activating immunity responses. Exogenous treatment with glutamate (Glu), an important amino acid for all living organisms, induces resistance against fungal pathogens in rice and tomato. To understand the molecular mechanisms of Glu-induced immunity, we used the Arabidopsis model system. We found that exogenous treatment with Glu induces resistance against pathogens in Arabidopsis. Consistent with this, transcriptome analyses of Arabidopsis seedlings showed that Glu significantly induces the expression of wound-, defense-, and stress-related genes. Interestingly, Glu activates the expression of genes induced by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns at much later time points than the flg22 peptide, which is a bacterial-derived PAMP. The Glu receptor-like (GLR) proteins GLR3.3 and GLR3.6 are involved in the early expression of Glu-inducible genes; however, the sustained expression of these genes does not require the GLR proteins. Glu-inducible gene expression is also not affected by mutations in genes that encode PAMP receptors (EFR, FLS2, and CERK1), regulators of pattern-triggered immunity (BAK1, BKK1, BIK1, and PBL1), or a salicylic acid biosynthesis enzyme (SID2). The treatment of roots with Glu activates the expression of PAMP-, salicylic acid-, and jasmonic acid-inducible genes in leaves. Moreover, the treatment of roots with Glu primes chitin-induced responses in leaves, possibly through transcriptional activation of LYSIN-MOTIF RECEPTOR-LIKE KINASE 5 (LYK5), which encodes a chitin receptor. Because Glu treatment does not cause discernible growth retardation, Glu can be used as an effective PRI.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Ácido Glutámico/farmacología , Inmunidad de la Planta/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Moléculas de Patrón Molecular Asociado a Patógenos
10.
Nat Commun ; 10(1): 5746, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848337

RESUMEN

Enzyme biosensors are useful tools that can monitor rapid changes in metabolite levels in real-time. However, current approaches are largely constrained to metabolites within a limited chemical space. With the rising development of artificial metalloenzymes (ArM), a unique opportunity exists to design biosensors from the ground-up for metabolites that are difficult to detect using current technologies. Here we present the design and development of the ArM ethylene probe (AEP), where an albumin scaffold is used to solubilize and protect a quenched ruthenium catalyst. In the presence of the phytohormone ethylene, cross metathesis can occur to produce fluorescence. The probe can be used to detect both exogenous- and endogenous-induced changes to ethylene biosynthesis in fruits and leaves. Overall, this work represents an example of an ArM biosensor, designed specifically for the spatial and temporal detection of a biological metabolite previously not accessible using enzyme biosensors.


Asunto(s)
Materiales Biomiméticos/síntesis química , Técnicas Biosensibles/instrumentación , Etilenos/análisis , Metaloproteínas/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Actinidia/metabolismo , Arabidopsis/metabolismo , Catálisis , Técnicas de Química Sintética/métodos , Enzimas/síntesis química , Enzimas/metabolismo , Etilenos/metabolismo , Fluorescencia , Frutas/metabolismo , Gases/análisis , Gases/metabolismo , Metaloproteínas/síntesis química , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/química , Rutenio/química , Albúmina Sérica Humana/síntesis química , Albúmina Sérica Humana/metabolismo
11.
Front Plant Sci ; 10: 1204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649690

RESUMEN

Agrobacterium tumefaciens has been utilized for both transient and stable transformations of plants. These transformation methods have been used in fields such as breeding GM crops, protein production in plant cells, and the functional analysis of genes. However, some plants have significantly lower transient gene transfer and stable transformation rates, creating a technical barrier that needs to be resolved. In this study, Super-Agrobacterium was updated to ver. 4 by introducing both the ACC deaminase (acdS) and GABA transaminase (gabT) genes, whose resultant enzymes degrade ACC, the ethylene precursor, and GABA, respectively. A. tumefaciens strain GV2260, which is similar to other major strains (EHA105, GV3101, LBA4404, and MP90), was used in this study. The abilities of the Super-Agrobacterium ver. 4 were evaluated in Erianthus ravennae, Solanum lycopersicum "Micro-Tom," Nicotiana benthamiana, and S. torvum. Super-Agrobacterium ver. 4 showed the highest T-DNA transfer (transient transformation) frequencies in E. ravennae and S. lycopersicum, but not in N. benthamiana and S. torvum. In tomato, Super-Agrobacterium ver. 4 increased the stable transformation rate by 3.6-fold compared to the original GV2260 strain. Super-Agrobacterium ver. 4 enables reduction of the amount of time and labor required for transformations by approximately 72%, and is therefore a more effective and powerful tool for plant genetic engineering and functional analysis, than the previously developed strains. As our system has a plasmid containing the acdS and gabT genes, it could be used in combination with other major strains such as EHA105, EHA101, LBA4404, MP90, and AGL1. Super-Agrobacterium ver. 4, could thus possibly be a breakthrough application for improving basic plant science research methods.

12.
Front Plant Sci ; 10: 1165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616453

RESUMEN

Plant-parasitic nematodes (PPNs), such as root-knot nematodes (RKNs) and cyst nematodes (CNs), are among the most devastating pests in agriculture. RKNs and CNs induce redifferentiation of root cells into feeding cells, which provide water and nutrients to these nematodes. Plants trigger immune responses to PPN infection by recognizing PPN invasion through several different but complementary systems. Plants recognize pathogen-associated molecular patterns (PAMPs) sderived from PPNs by cell surface-localized pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI). Plants can also recognize tissue and cellular damage caused by invasion or migration of PPNs through PRR-based recognition of damage-associated molecular patterns (DAMPs). Resistant plants have the added ability to recognize PPN effectors via intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type immune receptors, leading to NLR-triggered immunity. Some PRRs may also recognize apoplastic PPN effectors and induce PTI. Plant immune responses against PPNs include the secretion of anti-nematode enzymes, the production of anti-nematode compounds, cell wall reinforcement, production of reactive oxygen species and nitric oxide, and hypersensitive response-mediated cell death. In this review, we summarize the recognition mechanisms for PPN infection and what is known about PPN-induced immune responses in plants.

13.
New Phytol ; 221(4): 2160-2175, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30300945

RESUMEN

Plant immunity consists of two arms: pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), induced by surface-localized receptors, and effector-triggered immunity (ETI), induced by intracellular receptors. Despite the little structural similarity, both receptor types activate similar responses with different dynamics. To better understand phosphorylation events during ETI, we employed a phosphoproteomic screen using an inducible expression system of the bacterial effector avrRpt2 in Arabidopsis thaliana, and identified 109 differentially phosphorylated residues of membrane-associated proteins on activation of the intracellular RPS2 receptor. Interestingly, several RPS2-regulated phosphosites overlap with sites that are regulated during PTI, suggesting that these phosphosites may be convergent points of both signaling arms. Moreover, some of these sites are residues of important defense components, including the NADPH oxidase RBOHD, ABC-transporter PEN3, calcium-ATPase ACA8, noncanonical Gα protein XLG2 and H+ -ATPases. In particular, we found that S343 and S347 of RBOHD are common phosphorylation targets during PTI and ETI. Our mutational analyses showed that these sites are required for the production of reactive oxygen species during both PTI and ETI, and immunity against avirulent bacteria and a virulent necrotrophic fungus. We provide, for the first time, large-scale phosphoproteomic data of ETI, thereby suggesting crucial roles of common phosphosites in plant immunity.


Asunto(s)
Arabidopsis/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosfoproteínas/metabolismo , Inmunidad de la Planta , Proteómica , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Autoinmunidad/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Fosforilación , Inmunidad de la Planta/genética , ATPasas de Translocación de Protón/metabolismo , Pseudomonas syringae/fisiología , Especies Reactivas de Oxígeno/metabolismo , Virulencia
14.
Nature ; 563(7733): E30, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333630

RESUMEN

In Extended Data Fig. 5d of this Letter, the blots for anti-pS612 and anti-BAK1 were inadvertently duplicated. This figure has been corrected online.

15.
Nature ; 561(7722): 248-252, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30177827

RESUMEN

Multicellular organisms use cell-surface receptor kinases to sense and process extracellular signals. Many plant receptor kinases are activated by the formation of ligand-induced complexes with shape-complementary co-receptors1. The best-characterized co-receptor is BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), which associates with numerous leucine-rich repeat receptor kinases (LRR-RKs) to control immunity, growth and development2. Here we report key regulatory events that control the function of BAK1 and, more generally, LRR-RKs. Through a combination of phosphoproteomics and targeted mutagenesis, we identified conserved phosphosites that are required for the immune function of BAK1 in Arabidopsis thaliana. Notably, these phosphosites are not required for BAK1-dependent brassinosteroid-regulated growth. In addition to revealing a critical role for the phosphorylation of the BAK1 C-terminal tail, we identified a conserved tyrosine phosphosite that may be required for the function of the majority of Arabidopsis LRR-RKs, and which separates them into two distinct functional classes based on the presence or absence of this tyrosine. Our results suggest a phosphocode-based dichotomy of BAK1 function in plant signalling, and provide insights into receptor kinase activation that have broad implications for our understanding of how plants respond to their changing environment.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/inmunología , Arabidopsis/química , Arabidopsis/inmunología , Proteínas de Arabidopsis/inmunología , Ligandos , Modelos Moleculares , Fosforilación , Fosfotirosina/metabolismo , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/inmunología
16.
Genome Announc ; 6(26)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954888

RESUMEN

Root-knot nematodes (Meloidogyne spp.) cause serious damage to many crops globally. We report the high-quality genome sequence of Meloidogyne arenaria genotype A2-O. The genome assembly of M. arenaria A2-O is composed of 2,224 contigs with an N50 contig length of 204,551 bp and a total assembly length of 284.05 Mb.

17.
Curr Opin Plant Biol ; 44: 82-87, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29555490

RESUMEN

Virulence factors are molecules that enable plant pathogens to infect and colonize host tissues successfully. These molecules co-evolve with host genes to ensure functionality and to avoid recognition by the host immune system. Some pathogens also produce the plant growth hormone cytokinin (CK) and other plant hormones that contribute to virulence without being subjected to the molecular arms race. Here, we summarize recent findings regarding the role of CKs during infection and the establishment of plant diseases. We discuss commonalities and differences in CK biosynthesis, perception, and activity in infections by different phytopathogenic bacteria, fungi, nematodes and parasitic plants. Finally, we attempt to answer the question if CKs can be classified as bona fide virulence factors.


Asunto(s)
Citocininas/metabolismo , Factores de Virulencia/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología
18.
Plant Cell ; 28(7): 1701-21, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27317676

RESUMEN

Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on genes responsive to the priming agent ß-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants showed defective PTI responses, notably delayed upregulation of the PTI marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE1, reduced callose deposition, and mitogen-activated protein kinase activation upon MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to bacteria and showed a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)-dependent PRRs FLS2 and EFR, as well as with the BAK1-independent PRR CERK1. IOS1 also associated with BAK1 in a ligand-independent manner and positively regulated FLS2-BAK1 complex formation upon MAMP treatment. In addition, IOS1 was critical for chitin-mediated PTI. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a novel regulatory protein of FLS2-, EFR-, and CERK1-mediated signaling pathways that primes PTI activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aminobutiratos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/patogenicidad
19.
Proc Natl Acad Sci U S A ; 113(12): 3389-94, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26944079

RESUMEN

Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.


Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas y Péptidos de Choque por Frío/fisiología , Nicotiana/inmunología , Nicotiana/microbiología
20.
J Exp Bot ; 67(6): 1663-76, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26798024

RESUMEN

Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) that perform a wide range of functions. RbohD and RbohF, two of the 10 Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes including the response to pathogens. We hypothesized that the spatio-temporal control of RbohD and RbohF gene expression might be critical in determining their multiplicity of functions. Transgenic Arabidopsis plants with RbohD and RbohF promoter fusions to ß-glucuronidase and Luciferase reporter genes were generated. Analysis of these plants revealed a differential expression pattern for RbohD and RbohF throughout plant development and during immune responses. RbohD and RbohF gene expression was differentially modulated by pathogen-associated molecular patterns. Histochemical stains and in vivo expression analysis showed a correlation between the level of RbohD and RbohF promoter activity, H2O2 accumulation and the amount of cell death in response to the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungus Plectosphaerella cucumerina. A promoter-swap strategy revealed that the promoter region of RbohD was required to drive production of ROS by this gene in response to pathogens. Moreover, RbohD promoter was activated during Arabidopsis interaction with a non-virulent P. cucumerina isolate, and susceptibility tests with the double mutant rbohD rbohF uncovered a new function for these oxidases in basal resistance. Altogether, our results suggest that differential spatio-temporal expression of the Rboh genes contributes to fine-tune RBOH/NADPH oxidase-dependent ROS production and signaling in Arabidopsis immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Inmunidad de la Planta/genética , Arabidopsis/embriología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Ascomicetos/fisiología , Genes Reporteros , Prueba de Complementación Genética , Mutación/genética , NADPH Oxidasas/genética , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/fisiología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...